Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Decision Trees

Tobias Scheffer

Decision Trees

Decision Trees – Example

Head tracking and face recognition.

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.
- Example: Viola-Jones algorithm for face detection.

Decision Trees – Why?

- Simple to interpret.
 - Provides a classification plus a justification for it.
 - "Rejected, because subject has been employed less than 3 months and has collateral < 2 x disposable income".
- Fast inference:
 - For each instance, only one branch has to be traversed.
 - Frequently used in image processing.
- Simple, efficient, scalable learning algorithm.
- Complex nonlinear models.
- Works for classification and regression problems.

Classification

- Input: instance $\mathbf{x} \in X$.
 - Instances are represented as a vector of attributes.
 - An instance is an assignment to the attributes.
 - Instances will also be called feature vectors.

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \underbrace{\quad \text{e.g. features like color,}}_{\text{test results,...}}$$

- Output: class $y \in Y$; finite set Y.
 - e.g., {accepted, rejected}; {spam, not spam}.
 - The class is also referred to as the target attribute.

Classifier learning

Input: training data.

•
$$L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$$

• $\mathbf{x}_i = \begin{pmatrix} x_{i1} \\ \vdots \\ x_{n1} \end{pmatrix}$

• Output: Classifier.

• $f: X \to Y_{\frown}$

e.g. a decision tree: path along the edges to a leaf provides the classification

Regression

- Input: instance $\mathbf{x} \in X$.
 - e.g., feature vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$

- Output: continuous (real) value, $y \in \mathbb{R}$
- Learning problem: training data with continuous target value

•
$$L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$$

• e.g. $\langle (\mathbf{x}_1, 3.5), ..., (\mathbf{x}_n, -2.8) \rangle$

Decision Trees

- Test nodes:
 - Discrete attributes: node contains an attribute, branches are labeled with values.
 - Continuous attributes; nodes contain "≤" comparisons, branches are labeled "yes" and "no".
- Terminal nodes contain a value of the target attribute

Decision Trees

- Decision trees can be represented as decision rules, each terminal node corresponds to a rule.
 - ► E.g., Rejected ← positive credit report ∧ employment duration ≤ 3 months ∧ unemployed.

Application of Decision Trees

- Recursively descent along branch.
- In each test node, conduct test, choose the appropriate branch.
- In a terminal node, return the value.

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- Find a decision tree that predicts the correct class for the training data.
- Trivial way: create a tree that merely reproduces the training data.

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

Loan	Credit report	Employment last 3 months	Collateral > 50% loan	Payed back in full
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- Perhaps more elegant: From the trees that are consistent with the training data, choose the smallest (as few nodes as possible).
- Small trees can be good because:
 - they are easier to interpret;
 - There are more training instances per leaf node. Hence, the class decision in each leaf is better substantiated.

Complete Search for the Smallest Tree

- How many functionally different decision trees are there?
 - Assume *m* binary attributes and two classes.

What is the complexity of a complete search for the smallest tree?

Complete Search for the Smallest Tree

- How many functionally different decision trees are there?
 - Assume *m* binary attributes and two classes.
 - Tree has *m* layers of test nodes $\rightarrow 2^m 1$ test nodes.
 - $2^{(2^m)}$ assignments of classes to leaf nodes.
- What is the complexity of a complete search for the smallest tree?
 - Assignments of *m* attributes (or node can be missing) to $2^m 1$ test nodes: $O((m + 1)^{2^m 1})$.
 - Assignments of class labels to leaf nodes: $O(2^{(2^m)})$

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.
- Example: Viola-Jones algorithm for face detection.

- Greedy algorithm that finds a small tree (instead of the smallest tree) but is polynomial in the number of attributes.
- Idea for Algorithm?

Greedy Algorithm – Top-Down Construction

- 1. ID3(L)
 - 1. If all data in L have same class y, then return leaf node with class y.

	Loan	Credit report	Employment last	Collateral > 50% loan	Payed back		
			3 months		in full	<u> ۱</u>	
TD3(1	Positive	Yes	No	Yes) =	yes
	2	Positive	No	Yes	Yes		

Greedy Algorithm – Top-Down Construction

- 1. ID3(L)
 - 1. If all data in L have same class y, then return leaf node with class y.
 - 2. Else
 - 1. Choose attribute x_j that separates L into subsets $L_1, ..., L_k$ with most homogenous class distributions.
 - 2. Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - 3. Return test node with attribute x_j and children $ID3(L_1,)$, ..., $ID3(L_k)$.

Greedy Algorithm – Top-Down Construction

ID3(L)

- 1. If all data in L have same class y, then return leaf node with class y.
- 2. Else
 - 1. Choose attribute x_j that separates L into subsets $L_1, ..., L_k$ with most homogenous class distributions.
 - 2. Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - 3. Return test node with attribute x_j and children $ID3(L_1,), \dots, ID3(L_k)$.

What does it mean that an attribute splits the sample into subsets with homogenous class distributions?

Information

- Information theory uses models that involve a sender, a channel, a receiver, and a probability distribution over messages.
- Information is a property of messages, measured in units of bit.
- Information in a message (rounded) = number of bits needed to code that message in an optimal code.

Information

- Information theory uses models that involve a sender, a channel, a receiver, and a probability distribution over messages.
- The information in a message y that is sent with probability p(y) is $-\log_2 p(y)$.

Information

- Information theory uses models that involve a sender, a channel, a receiver, and a probability distribution over messages.
- The information in a message y that is sent with probability p(y) is $-\log_2 p(y)$.

Entropy

Entropy is the expected information of a message.

• $H(y) = -\sum_{\nu=1}^{k} p(y=\nu) \log_2 p(y=\nu)$

- Entropy quantifies the receiver's uncertainty regarding the message
- Empirical entropy H_L: use frequencies observed in data L instead of probabilities.

Sender

$$p(0) = \frac{1}{2}$$

$$p(1) = \frac{1}{4}$$

$$p(2) = \frac{1}{4}$$
Message y

$$H(y) = -\frac{1}{2}log_{2}\frac{1}{2} - 2\frac{1}{4}log_{2}\frac{1}{4}$$

$$= 1.5bit$$

Entropy of Class Labels in Training Data

 Information / uncertainty of the class labels = expected number of bits needed to send message about class label of an instance to a receiver.

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

 $H_L(y) = -\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5} = 0.97bit$

Conditional Entropy

 Information / uncertainty of the class labels under some condition on the features.

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% Ioan)	<i>y</i> (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

$$H_L(y|x_1 = n) = -\frac{2}{2}\log_2 \frac{2}{2} - \frac{0}{5}\log_2 \frac{0}{5} = 0$$
 bit

Conditional Entropy

 Information / uncertainty of the class labels under some condition on the features.

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

$$H_L(y|x_1 = n) = -\frac{2}{2}\log_2 \frac{2}{2} - \frac{0}{5}\log_2 \frac{0}{5} = 0$$

$$H_L(y|x_1 = p) = -\frac{2}{3}\log_2 \frac{2}{3} - \frac{1}{3}\log_2 \frac{1}{3} = 0.91$$
 bit

Information Gain of an Attribute

Reduction of entropy by splitting the data along an attribute

•
$$G_L(x_j) = H_L(y) - \sum_{\nu=1}^k p_L(x_j = \nu) H_L(y|x_j = \nu)$$

Loan	x ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	<i>y</i> (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- $G_L(x_1) = H_L(y) p_L(x_1 = p)H_L(y|x_1 = p) p_L(x_1 = n)H_L(y|x_1 = n)$ = $0.97 - \frac{3}{5}0.91 - \frac{2}{5}0 = 0.42bit$
- Splitting along x₁ reduces the uncertainty regarding the class label y by 0.42 bit.

Information Gain Ratio

- Motivation:
 - Predicting whether a student will pass an exam.
 - How high is the information gain of the attribute "Matriculation number"?
- Information gain favors attributes with many values.
- Not necessarily an indicator of good generalization.
- Idea: factor the information that is contained in the attribute values into the decision

•
$$H_L(x_j) = -\sum_{\nu=1}^k p_L(x_j = \nu) \log_2 p_L(x_j = \nu)$$

Information Gain Ratio

 Idea: factor the information that is contained in the attribute values into the decision

•
$$H_L(x_j) = -\sum_{\nu=1}^k p_L(x_j = \nu) \log_2 p_L(x_j = \nu)$$

Information gain ratio:

•
$$GR_L(x_j) = \frac{G_L(x_j)}{H_L(x_j)}$$

Example: Info Gain Ratio

Which split is better?

Example: Info Gain Ratio

Which split is better?

$$IG_L(x_1) = 1 - 4\frac{1}{4}0 = 1$$

$$H_L(x_1) = -4\left(\frac{1}{4}\log_2\frac{1}{4}\right) = 2$$

$$GR_L(x_1) = \frac{IG_L(x_1)}{H_L(x_1)} = \frac{1}{2}$$

$$IG_{L}(x_{2}) = 1 - \frac{3}{4}0.92 - \frac{1}{4}0 = 0.68$$
$$H_{L}(x_{2}) = -\left(\frac{3}{4}\log_{2}\frac{3}{4} + \frac{1}{4}\log_{2}\frac{1}{4}\right) = 0.81$$
$$GR_{L}(x_{2}) = \frac{IG_{L}(x_{2})}{H_{L}(x_{2})} = 0.84$$
Algorithm ID3

- Preconditions:
 - Classification problems
 - All attributes have fixed, discrete ranges of values.
- Idea: recursive algorithm.
 - Choose attribute that conveys highest information regarding the class label (Use information gain, gain ratio, or Gini index).
 - Split the training data according to the attribute.
 - Recursively call algorithm for branches.
 - In each branch, use each attribute only once; if all attributes have been used, return leaf node.

Learning Decision Trees with ID3

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - For all attributes $x_j \in X$, calculate split criterion $G_L(x_j)$ or $GR_L(x_j)$.
 - 2. Choose attribute $x_j \in X$ with highest $G_L(x_j)$ or $GR_L(x_j)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x ₃ (Collateral > 50% loan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2		No	Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2		No	Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2		No	Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2			Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2			Yes	Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2				Yes
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2				
3	Positive	No	No	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	<i>x</i> ₂ (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	<i>y</i> (Payed back in full)
1	Positive	Yes	No	Yes
3	Positive	No	No	No
4		No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Loan	<i>x</i> ₁ (Credit report)	x_2 (Employment last 3 months)	x₃ (Collateral > 50% Ioan)	y (Payed back in full)
1	Positive	Yes	No	Yes
2	Positive	No	Yes	Yes
3	Positive	No	No	No
4	Negative	No	Yes	No
5	Negative	Yes	No	No

- If all data in L have same class y or X={}, then return leaf node with majority class y.
- 2. Else
 - 1. For all $x_j \in X$, calculate $G_L(x_j)$.
 - 2. Choose attribute $x_i \in X$ with highest $G_L(x_i)$.
 - 3. Let $L_i = \{(x, y) \in L: x_j = i\}.$
 - 4. Return test node with attribute x_j and children $ID3(L_1, X \setminus x_j)$, ..., $ID3(L_k, X \setminus x_j)$.

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.
- Example: Viola-Jones algorithm for face detection.

Continuous Attributes

- ID3 constructs a branch for every value of the selected attribute.
- This only works for discrete attributes.
- Idea: Choose attribute value pair, use test $x_i \leq v$.
 - $G_L(x_j \le v)$ = $H_L(y) - p_L(x_j \le v)H_L(y|x_j \le v) - p_L(x_j > v)H_L(y|x_j > v)$
- Problem: there are infinitely many values.
- Idea: use only values that occur for that attribute in the training data.

Learning Decision Trees with C4.5

C4.5(L)

- 1. If all data in L have same class y or are identical, then return leaf node with majority class y.
- 2. Else
 - 1. For all discrete attributes $x_j \in X$: calculate $G_L(x_j)$.
 - 2. For all continuous attributes $x_j \in X$ and all values v that occur for x_j in L: calculate $G_L(x_j \le v)$.
 - If discrete attribute has highest $G_{L}(x_{i})$:
 - 1. Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - 2. Return test node with attribute x_j and children C4.5(L₁), ..., C4.5(L_k).
 - 4. If continuous attribute has highest $G_L(x_j \leq v)$:
 - 1. Let $L_{\leq} = \{(x, y) \in L: x_j \leq v\}, L_{>} = \{(x, y) \in L: x_j > v\}$
 - 2. Return test node with test $x_j \leq v$ and children C4.5(L_{\leq}), C4.5(L_>).

Pruning

- Leaf nodes that only are supported by a single (or very few) instances, often do not provide a good classification.
- Pruning:
 - Remove test nodes whose leaves have less than τ instances.
 - Collect in new leaf node that is labeled with the majority class
- Pruning parameter τ is a regularization parameter that has to be tuned (e.g., by cross validation).

Pruning with Threshold 5: Example

Pruning with Threshold 5: Example

Pruning with Threshold 5: Example

Reduced Error Pruning

- Split training data into a training set and a pruning validation set.
- Construct a decision tree using the training set (for instance, with C4.5).
- Starting from the bottom layer, iterate over all test nodes whose children are leaf nodes.
 - If removing the test node and replacing it with a leaf node that predicts the majority class reduces the error rate on the pruning set, then do it!

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.
- Example: Viola-Jones algorithm for face detection.

Regression

- Input: instance $\mathbf{x} \in X$.
 - e.g., feature vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$

- Output: continuous (real) value, $y \in \mathbb{R}$
- Learning problem: training data with continuous target value

•
$$L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$$

• e.g. $\langle (\mathbf{x}_1, 3.5), ..., (\mathbf{x}_n, -2.8) \rangle$

Regression

- Input: instance $\mathbf{x} \in X$.
 - e.g., feature vector

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$

- Output: continuous (real) value, $y \in \mathbb{R}$
- Learning goal:
 - Low quadratic error rate + simple model.
 - $SSE = \sum_{i=1}^{n} (y_i f(x_i))^2$; $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$
- Split criterion for regression?

Regression Trees

• Variance of the target attribute on sample *L*:

•
$$Var(L) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2$$

- Variance = MSE of predicting the mean value.
- Splitting criterion: variance reduction of $[x_j \le v]$:

•
$$R_L[x_j \le v]$$

= $Var(L) - \frac{n_{[x_j \le v]}}{n} Var(L_{[x_j \le v]}) - \frac{n_{[x_j > v]}}{n} Var(L_{[x_j > v]})$

Stopping criterion:

• Do not create a new test node if $nVar(L) \leq \tau$.

Learning Regression Trees with CART

CART(L)

- 1. If $\sum_{i=1}^{n} (y_i \bar{y})^2 < \tau$, then return leaf node with prediction \bar{y} .
- 2. Else
 - For all discrete attributes $x_j \in X$: calculate $R_L(x_j)$.
 - 2. For all continuous attributes $x_j \in X$ and all values v that occur for x_j in L: calculate $R_L(x_j \leq v)$.
 - If discrete attribute has highest $R_{L}(x_{i})$:
 - 1. Let $L_i = \{(x, y) \in L: x_j = i\}$.
 - 2. Return test node with attribute x_j and children CART(L₁), ..., CART(L_k).
 - 4. If continuous attribute has highest $R_L(x_j \leq v)$:
 - 1. Let $L_{\leq} = \{(x, y) \in L: x_j \leq v\}, L_{>} = \{(x, y) \in L: x_j > v\}$
 - 2. Return test node with test $x_j \leq v$ and children $CART(L_{\leq})$, $CART(L_{>})$.
CART- Example

• Which split is better?

Loan x_1 (Credit x₂ (Employment y (recovery last 3 months) report) rate) Positive Yes 0.8 1 Positive No 0.9 2 3 Positive No 0.4 4 Negative No 0.1 5 Negative Yes 0.2

• $Var(L) = \frac{1}{5} ((0.8 - 0.48)^2 + \dots + (0.2 - 0.48)^2) = 0.1148$

$$Var_{pos} = \frac{1}{3} ((0.8 - 0.7)^2 + (0.9 - 0.7)^2 + (0.4 - 0.7)^2) = 0.0466 \qquad Var_{yes} = \frac{1}{2} ((0.8 - 0.5)^2 + (0.2 - 0.5)^2) = 0.0466 = \frac{1}{2} ((0.1 - 0.15)^2 + (0.2 - 0.15)^2) = 0.0025 \qquad Var_{no} = \frac{1}{3} ((0.9 - 0.46)^2 + (0.4 - 0.46)^2 + (0.1 - 0.46)^2) = 0.1148 - \frac{3}{5} \times 0.0466 - \frac{2}{5} \times 0.0025 = 0.085 \qquad 0.1148 - \frac{2}{5} \times -\frac{3}{5} \times = 0.1148 - \frac{2}{5} \times -\frac{3}{5} \times = 0.0025 = 0.085$$

Model Trees

- Nodes in regression trees are labeled with the mean value of their training instances.
- Idea: Instead train local linear regression model using the instances that fall into the leaf.

Linear Regression

- Input: $L = \langle (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n) \rangle$
- Linear regression model $f(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}}\mathbf{x} + \theta_0$
- Will be discussed in later lectue.

Points along the Regression plane are perpendicular to the normal vector.

Model Trees

 Decision trees but with a linear regression model at each leaf node.

Model Trees

 Decision trees but with a linear regression model at each leaf node.

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.
- Example: Viola-Jones algorithm for face detection.

- Assume that we have 3 models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.1.
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:
 - $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$
- What is the error probability of $f(\mathbf{x})$?

- Assume that we have 3 models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.1.
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:
 - $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$
- What is the error probability of $f(\mathbf{x})$?
 - Depends on how correlated the models are.
 - If they always make identical prediction, the error rate of the ensemble is 0.1 as well.

- Assume that we have 3 models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.1.
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:

• $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$

- What is the error probability of f(x) if the models are independent?
 - 2 out of 3 models have to err.
 - There are 3 subsets of 2 models.

• $R \le 3 \times 0.1^2 = 0.03$.

 Ensemble is much better than individual models.

- Assume that we have n models $f_i(\mathbf{x})$.
- Each model has an error probability of 0.5ε .
- Let $f(\mathbf{x})$ be the majority vote among the $f_i(\mathbf{x})$:

• $f(\mathbf{x}) = \arg \max_{y} |\{i: f_i(\mathbf{x}) = y\}|.$

- Ensemble f(x) may be much better than individual models if
 - Each model's error probability is below 0.5
 - The models are sufficiently uncorrelated.

- Ensemble methods differ in how they try to obtain uncorrelated classifiers from given training data.
- Bagging: sample random subsets of training instances.
- Random forests: sample random subsets of training instances and random subsets of features.
- Boosting: iteratively sample subsets of the training instances such that instances that are misclassified by the current ensemble receive a higher weight.

Bootstrapping

- The bootstrapping procedure draws *n* instances from a set of *n* instances with replacement.
- Instances can be drawn multiple times.
- 1. Input: sample L of size n.
- 2. For i=1...k
 - 1. Draw n instances uniformly with replacement from L into set L_i .
 - 2. Learn model f_i on sample L_i .
- 3. Return models (f_1, \ldots, f_k) .

Bagging – Bootstrap Aggregating

- Input: sample L of size n.
- 1. For i=1...k
 - 1. Draw n instances uniformly with replacement from L into set L_i .
 - 2. Learn model f_i on sample L_i .
- 2. For classification:
 - 1. Let $f(\mathbf{x})$ be the majority vote among $(f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$.
- 3. For regression:

1. Let
$$f(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} f_i(\mathbf{x})$$
.

Bagging – Bootstrap Aggregating

- Models are somewhat uncorrelated because they have been trained on different subsets of the data.
- But all models use the same attributes and share a good part of the training data.
- Idea: also vary the attributes.

Random Forests

- Input: sample L of size n, attributes X.
- 1. For i=1...k
 - 1. Draw n instances uniformly with replacement from L into set L_i .
 - 2. Draw m attributes from all attributes X into X_i .
 - 3. Learn model f_i on sample L_i using attributes X_i .
- 2. For classification:
 - 1. Let $f(\mathbf{x})$ be the majority vote among $(f_1(\mathbf{x}), \dots, f_k(\mathbf{x}))$.
- 3. For regression:

1. Let
$$f(\mathbf{x}) = \frac{1}{k} \sum_{i=1}^{k} f_i(\mathbf{x})$$
.

Random Forests

- Number of sampled attributes is a hyperparameter.
- Decision trees are sometimes trained with depthbound.
- Decision trees are usually trained without pruning.
- The number of trees is a hyperparameter; often, large, fixed values are used (e.g., 1000 trees).

Overview

- Decision trees.
- Classification with categorical features: ID3.
- Classification with continuous features: C4.5.
- Regression: CART, model trees.
- Bagging.
- Random forests.
- Example: Viola-Jones algorithm for face detection.

Face Detection Training Data

- Rectangular boxes that contain aligned images of faces (positive examples) and not faces (negative examples) in a fixed resolution.
- A typical resolution is 24 x 24 pixels.

Haar Features

- Subtract white rectangle of an image from black rectangle.
 - Size, type, position, polarity are parameters.
 - A and C detect horizontal lines, B vertical lines, D detects diagonal patterns.

Haar Features

- Subtract white rectangle of an image from black rectangle.
 - Size, type, position, polarity are parameters.
 - A and C detect horizontal lines, B vertical lines, D detects diagonal patterns.

grey value(i) – grey value(*i*) pixels *i* in green pixels *i* in red rectangle rectangle

Haar Features: Efficient Calculation

- Integral image: $I_{int}(x, y) = \sum_{x' \le x, y' \le y} I(x', y')$.
- Can be computed in one pass over the image.
- All Haar features can be calculated in constant time from the integral image

•
$$B - A = I_{int}([1,2]) - 2I_{int}([1,1])$$

• $A - C = I_{int}([1,1]) - (I_{int}([2,1]) - I_{int}([1,1]))$

Decision Stumps with Haar Features

- Decision stumps = decision trees of depth 1.
- 1. Input: Training data L.
- 2. For all available features (type, size, position, polarity, threshold):
 - 1. calculate split criterion (reduction of error rate).
- 3. Create test node with best Haar feature.

Ensemble of Decision Stumps

- Use AdaBoost (a variant of boosting) to create an ensemble of decision stumps of prescribed size.
- The ensemble is a weighted combination of features that have a continuous value.
- The weighted combination is compared against a threshold.
- Lowering this threshold increases the recognition rate and the false-positive rate
- Increasing this threshold decreases the recognition rate and the false-positive rate

Training a Recognition Cascade

- Input: Training data L, number of layers n, desired recall for each layer, r[l], ensemble size for each layer, s[l].
- For layer l=1...n
 - Train an ensemble (weighted combination of features) f[1] of decision stumps of size s[1].
 - Adjust the threshold θ [1] such that a recall of r[1] is obtained.
 - Conbinue training on the next layer with those instances that are classified as a face by the ensemble f[1].

Face Detection Cascade

- First layer is an ensemble of two Haar features that has a recall of 100% and removes 50% of the nonfaces.
- Subsequent layers have larger ensembles

Scanning Images for Faces

- 1. For all sizes of the bounding box:
 - 1. For all positions of the bounding box in the image:
 - Resample the image window under the bounding box to the fixed resolution of the cascade (24 x 24 pixels)
 - 2. Apply the face detection cascade.
- 2. Return all bounding boxes which were classified as face by the cascade.

Shape Regression with LBF Features

 Random forest is applied iteratively to predict position updates which move a face of landmarks to their correct position.

Summary of Decision Trees

- Classification
 - Discrete attributes: ID3.
 - Continuous attributes: C4.5.
- Regression:
 - CART: mean value in each leaf.
 - Model trees: linear regression model in each leaf.
- Decision trees are comprehensible models, tests provide the reason for each classification result.
- Applying a decision tree is fast; popular in image processing tasks (face detection, face alignment).